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The power loss and electromagnetic energy density of a metamaterial consisting of arrays of wires and
split-ring resonators are investigated. We show that a field energy density formula can be derived consistently
from both the electrodynamic �ED� approach and the equivalent circuit �EC� approach. The derivations are
based on the knowledge of the dynamical equations of the electric and magnetic dipoles in the medium and the
correct form of the power loss. We discuss the role of power loss in determining the form of energy density and
explain why the power loss should be identified first in the ED derivation. When the power loss is negligible
and the field is harmonic, our energy density formula reduces to the result of Landau’s classical formula. For
the general case with finite power loss, our investigation resolves the apparent contradiction between the
previous results derived by the EC and ED approaches.
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I. INTRODUCTION

Artificial electromagnetic media having negative permit-
tivity and permeability have been fabricated and tested ex-
perimentally for several years �1�. According to Veselago �2�,
these metamaterial media are left-handed �over a finite range
of frequency�, in the sense that the Poynting vector and wave
vector are antiparallel to each other. Besides, they are disper-
sive and absorptive in general �3�.

For a dispersive medium with negligible absorption, the
energy density formula can be obtained via analyzing an
adiabatic electromagnetic process �4,5�. However, this analy-
sis does not work when finite absorption is present. To evalu-
ate the electromagnetic energy density stored in a dispersive
medium with nonzero absorption, one has to adopt different
strategies. Now the existence of the �effective� left-handed
metamaterial makes this problem even more dramatic be-
cause negative permittivity and permeability seems to imply
the possibility of negative energy density, contradicting the
thermodynamic stability conditions.

If the absorption of the medium is infinitesimal, the time-
averaged energy density of a harmonic electromagnetic wave
would be given by �5�

�W� =
�0

4

��������
��

�E�2 +
�0

4

��������
��

�H�2, �1�

where E and H are the complex electric and magnetic fields
and ���� and ���� denote the frequency dependent permit-
tivity and permeability, respectively. Hereafter we name Eq.
�1� as Landau’s classical formula. This formula provides a
reference for checking the correctness of the desired energy
density formula in the lossless limit.

There are two common approaches, namely the equivalent
circuit �EC� approach and the electrodynamic �ED� ap-
proach, being used to derive the energy density formula for a
dispersive media with finite power loss. In the EC approach,
first, one has to transform the wave medium problem to a
corresponding electric circuit problem �6,7�, where the val-
ues of the capacitances, inductances, resistances and their
arrangements in the circuit system can be deduced from the
specific forms of ���� and ����, and then the electric and

magnetic energies stored in the circuit system can be evalu-
ated. In the final stage, one transforms the result back to the
original wave medium problem to find the corresponding
energy density. On the other hand, in the ED approach, the
energy density formula is obtained as a by-product of the
following energy conservation law �the Poynting theorem�:

− � · S =
�W

�t
+ Ploss. �2�

This conservation law can be derived using Maxwell’s equa-
tions, with the aid of the equations of motions of the polar-
ization and magnetization of the medium �8–11�. Here S, W,
and Ploss stands for the Poynting vector, energy density, and
power loss, respectively. Usually the EC approach provides
the time-averaged result although the energy density at a
specific time can also be deduced. On the other hand, the ED
approach is inherently a time domain approach, which pro-
vides the expression of the instantaneous energy density of
an arbitrarily varying electromagnetic field. The time-
averaged result for a harmonic wave can also be obtained by
averaging the energy density in one period of oscillation.

It has been pointed out, if the medium has finite power
loss, it is impossible to define the energy density uniquely if
we do not have a microstructure model of the material �6�.
With the microscopic models of the electric and magnetic
constituents of the medium, the dynamical behaviors of the
corresponding electric and magnetic dipoles can be pre-
dicted, and the energy stored in the medium can be correctly
evaluated. In the literature, several dispersive media with dif-
ferent microscopic dipole models have been considered. The
simplest one is an absorptive classical dielectric �Lorentz dis-
persion� with a single resonant frequency �7,8�. This can be
generalized to the case that both the permittivity and the
permeability have Lorentz-type dispersions �9,10�. Non-
Lorentz-type dispersions have also been considered. For ex-
ample, in the wire-split-ring resonator �SRR� metamaterial
medium, the wires provide the plasmalike dispersion for per-
mittivity
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���� = 1 −
�p

2

��� + i��
, �3�

whereas the SRRs provide a non-Lorentz-type dispersion for
permeability

���� = 1 +
F�2

�0
2 − �2 − i��

. �4�

Here the parameters � and � represent the absorption effect
of the wires and SRRs and F is a dimensionless factor. Be-
sides, �p and �0 are the effective plasma frequency of the
wire medium and the resonant frequency of the SRR me-
dium, respectively.

Recently, two different expressions for the electromag-
netic energy density of the wire-SRR medium were derived
using EC �6� and ED �11� approaches. Although the electric
energy densities obtained in these two papers are consistent,
their results for the magnetic part are different. In addition,
the magnetic energy density formula of �6� �Eq. �31�� does
not reduce to the classical result �5� in the lossless limit. We
find that this was caused by the fact that in evaluating the
total energy �Eq. �27��, the magnetic energy �of form
1 /2 Re�MI0I��� stored in the mutual inductance M between
two subcircuits was not taken into account by the author. On
the other hand, the formula in �11� �Eq. �19�� does reduce to
the classical result in the zero absorption limit. However,
when we transform every term in this formula to the corre-
sponding EC system to find its counterpart, an unphysical
term VR

2 /2C �originated from the �2�2 term in the numera-
tor� appears. Here C is the capacitance in the RLC subcircuit
of the EC and VR is the voltage difference between the two
terminals of the resistance R in the subcircuit �see Fig. 2 of
�6��.

In addition to the above mentioned problems, we also
noted that in general the derivation via ED approach does not
provide a unique answer. This is caused by the fact that up to
now there is no unique way to determine whether a term with
the dimension of power should be included in the time de-
rivative of the energy density �W /�t or in the power loss
Ploss. In fact, if one does not know the correct form of the
power loss, one can always redefine the energy density and
power loss as W�=W+U and Ploss� = Ploss−�U /�t, where U is
an arbitrary bilinear function of E and H. For harmonic E
and H fields, this modification does not change the time-
averaged value of Ploss �i.e., �Ploss� �= �Ploss�� because
��U /�t�=1 /T�0

T�U /�tdt= �U�T�−U�0�� /T=0 �T is the period
of oscillation�. However, usually the time-averaged value of
W will be modified. This observation explains why the time-
averaged power loss formulas obtained in �6,11� are the
same, but their time-averaged energy density formulas are
different. This observation also reveals that the expression of
the energy density is related to the power loss we choose.
Note that when we go to the lossless limit, the ambiguity
discussed here disappears and a unique energy density for-
mula can be obtained. However, for the finite loss case, to
identify the energy density directly is difficult and we do not
know any practical method to avoid the above mentioned
ambiguity, thus we propose to identify the power loss first.

In order to resolve the contradictions between the EC and
ED approaches and derive a unique and physically reason-
able energy density formula, we adopt the following criteria.
First, the results derived by using different approaches must
be the same. Second, the formula must reduce to Landau’s
classical formula in the zero absorption limit. Third, the ori-
gin and the expression for the power loss must be carefully
analyzed and identified first.

In this paper, we will show that the unique energy density
formula can be obtained by using either the ED or EC ap-
proach. In addition, the comparison between these two dif-
ferent derivations helps us to clarify the meaning of each
physical quantity appearing in the energy density formula.
The essential part in the ED derivation is the correct form of
the power loss, and we show that it can be found by carefully
analyzing the heat generating mechanism in the medium.
Our discussion and obtained results in this paper resolve the
apparent contradictions between the ED and EC approaches
and correct the calculation errors in other previous papers.
Although in this paper we consider only the wire-SRR me-
dium, the method is in fact not restricted by this case and can
be applied to other kinds of dispersive metamaterial media as
well.

This paper is organized as follows. In Sec. II we derive
the energy density formula via ED approach. We argue that
in this derivation the correct form of power loss is essential
for obtaining the unique result we desire. In Sec. III, we
further establish the ED-EC correspondence by constructing
the EC system for evaluating the magnetic energy stored in
the SRR array. The ED-EC correspondence further confirms
the correctness of the energy density and power loss formu-
las obtained by ED approach. In Sec. IV we present the
conclusion of this paper.

II. POWER LOSS AND ED APPROACH

Now we consider the metamaterial medium consisting of
metallic wires and split-ring resonators. Under the influence
of external electromagnetic field, the wires respond to the
field as electric dipoles, whereas the resonators play the role
of magnetic dipoles. After averaging the dynamical behavior
of these elements, the electromagnetic properties of the me-
dium can be described by an effective theory, having the
following macroscopic quantities as dynamical variables: E,
D, B, H, P, and M. They satisfy the following constitutive
relations:

D = �0E + P , �5�

H =
B

�0
− M . �6�

The dynamic equations for P and M are given by

P̈ + �Ṗ = �0�p
2E , �7�

Ṁ + �M + �0
2	 Mdt = − FḢ , �8�

which can be derived by analyzing the currents flowing in
the wires and the SRRs under the influence of the applying
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electromagnetic fields. The displacements of the charges in
the wires lead to the electric dipoles, and the total electric
dipole moment per unit volume defines the polarization P.
Therefore, the dynamic equation of P follows the form of the
equation of motion for the charges. On the other hand, a time
varying magnetic field parallel to the axes of the SRR arrays
induces the oscillating currents in these SRRs. Suppose the
current in an SRR is I, and the effective cross-section area of
it is A, then m= IA is the magnetic dipole moment of the
SRR. The magnetization M is then defined by the total mag-
netic dipole moment per unit volume. The dynamical equa-
tion for the currents flowing in the SRRs can be derived by
using the Faraday’s law, and the dynamic equation for M
follows the same form. Note that the term on the right-hand
side of Eq. �7� is proportional to the electric field E, whereas
the corresponding term in Eq. �8� is proportional to the time
derivative of the magnetic field. This difference is caused by
the fact that the electric dipoles are induced by the electric
driving field, but the magnetic dipoles in this system can
only be induced by the time varying magnetic fluxes through
the SRRs. For the details of the derivation, readers may refer
to Refs. �12–14�. Using Eqs. �7� and �8� and assuming
the monochromatic condition, the permittivity of Eq. �3�
and permeability of Eq. �4� can be obtained according
to the definitions: ����=D��� / ��0E���� and ����=B��� /
��0H����.

Now we derive the energy conservation law of the form

− � · �E � H� =
�We

�t
+

�Wb

�t
+ Ploss �9�

from Maxwell’s equations and the dynamical equations of P
and M �Eqs. �7� and �8��. According to Ampere’s law and
Faraday’s law, we have

− � · �E � H� = E ·
�D

�t
+ H ·

�B

�t
=

�

�t

 �0E2

2
� + E ·

�P

�t

+
�

�t

�0H2

2
� + �0H ·

�M

�t
. �10�

The electric energy density We and magnetic energy den-
sity Wb can be obtained by integrating the E ·�D /�t and
H ·�B /�t terms, respectively. The loss term Ploss can also be
obtained from them. Note that the loss term cannot be writ-
ten as a total derivative, and this feature was utilized by the
authors of Ref. �11� to find the energy density. However, as
we have mentioned before, to uniquely determine the form
of the energy density, one has to carefully analyze the origin
and the correct form of the power loss first. Once the power
loss has been made certain, the energy density can be deter-
mined automatically.

The origin and form of the power loss in the wire-SRR
medium can be made certain by noticing the following two

facts. First, both Ṗ and M are proportional to the currents
flowing in the conducting constituents �wires and SRRs� of
the wire-SRR medium. Second, the power loss of this me-
dium can only be originated from the joule heat of form I2R,

generated in theses conducting elements. We thus conclude
that the power loss of the wire-SRR medium should have the
form

Ploss = �Ṗ2 + �M2, �11�

where � and � are two appropriate constants.
Using Eq. �7�, we get

E ·
�P

�t
=

1

�p
2�0

 �2P

�t2 + �
�P

�t
� ·

�P

�t
=

�

�t

 Ṗ2

2�p
2�0
� +

�

�p
2�0

Ṗ2,

�12�

thus the electric energy density We should be defined as

We =
�0E2

2
+

Ṗ2

2�p
2�0

. �13�

Note that the additional term �Ṗ2 /�p
2�0 in Eq. �12� is the

electric part of Ploss consistent with Eq. �11�.
The derivation of magnetic energy density is a little dif-

ferent, as will be shown below. Substituting Eq. �8� into the
H ·�M /�t term, we have

�0H ·
�M

�t
=

�

�t
��0H · M� − �0M ·

�H

�t

=
�

�t
��0H · M� +

�0

F
M · �Ṁ + �M + �0

2	 Mdt�

=
�

�t
��0H · M +

�0

2F
M2 +

�0�0
2

2F
�	 Mdt�2

+
��0

F
M2. �14�

The magnetic energy density is thus written as

Wb =
�0H2

2
+ �0H · M +

�0M2

2F
+

�0�0
2��Mdt�2

2F
. �15�

The ��0M2 /F term in Eq. �14� represents the magnetic part
of the power loss Ploss caused by the joule heat in the split-
ring resonators, also consistent with Eq. �11�.

Using Eq. �8� once more, the magnetic energy density can
be rewritten as

Wb =
�0H2

2
+ �0H · M +

�0M2

2F
+

�0

2�0
2F

�Ṁ + FḢ + �M�2

�16�

or expressed alternatively as

Wb =
�0�1 − F�

2
H2 +

�0

2�0
2F

��Ṁ + FḢ + �M�2 + �0
2�M

+ FH�2� . �17�

Note that this final form of magnetic energy density is simi-
lar to the Eq. �15� of �11�, but they are different. Our deriva-
tion relies on the knowledge of the correct form of the power
loss, whereas the derivation in �11� did not use this knowl-
edge thus ambiguity may arise as has been explained before.
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The total power loss is given by

Ploss =
�Ṗ2

�p
2�0

+
��0M2

F
, �18�

which is indeed the expected form of Eq. �11� and different
from the Eq. �16� of �11�. Our power loss formula has clear
physical meaning, as has been explained before. On the other
hand, the Eq. �16� of �11� has no such clear and convincing
meaning, thus we believe it need to be modified. Note that
the difference between these two formulas �i.e., Ploss− PL� is
given by

	Ploss =
�

�t

 �2�0

2�0
2F

M2 +
��0

F
M ·	 Mdt� . �19�

Since this is simply a time derivative of a time varying quan-
tity, it contributes nothing to the time-averaged power loss if
the field is harmonic. The equivalence relation �Ploss�= �PL�
can be directly checked by explicit calculation.

Now we consider the time averaged energy density for
monochromatic wave. Time averaging every term in Eq.
�13�, we get the electric energy density

�We� =
�0�E�2

4

1 +

�p
2

�2 + �2� . �20�

Similarly, time averaging all the terms in Eq. �17� and adding
them together, we get the magnetic energy density

�Wb� =
�0�H�2

4
�1 + F

�2�3�0
2 − �2�

��0
2 − �2�2 + �2�2 . �21�

We stress here that Eq. �21� is just the corrected result of the
magnetic energy density formula �Eq. �31�� in Ref. �6� after
adding the mutual induction energy term that mentioned in
Sec. I.

III. ED-EC CORRESPONDENCE

Referring to Ref. �14�, we can now construct an EC model
for the SRR array. We will show that the magnetic energy
density formula �17� can also be derived by virtue of this EC
model. The most important distinction between our follow-
ing derivation and those proposed by others is that we con-
sider arbitrarily varying physical quantities, whereas others
considered the restricted harmonic cases. The ED-EC corre-
spondence further confirms the correctness of our derived
energy density and power loss formulas.

To map the ED quantities to the corresponding EC ones,
we adopt the configuration sketched in Fig. 1. Accordingly,
in one unit cell, the SRRs are piled up in the y direction to
form an SRR stack, which can be viewed as a circular sole-
noid. The y spacing between two successive SRRs in one
stack is l. These SRR stacks are periodically arranged at a
square lattice of lattice constant a. For one unit cell, in order
to mimic the magnetic field acting on the SRR stack inside,
we further introduce an imagined cell solenoid of square
cross section wrapping around the “unit-cell tube.” In one
turn the coil line of the cell solenoid is assumed to spiral up
l in the y direction. We will show in the following that by

appropriately defining the currents carried by the cell sole-
noid and the SRR stack inside the cell tube and the electro-
motive forces in them, the ED-EC correspondence can in-
deed be established.

Now we define the physical quantities of the EC system.
Since all the vector quantities we considered are parallel to
the y direction, hereafter we treat them as scalar quantities.
The magnetization M and the magnetic field H �in the con-
nected region outside the SRR stacks� are given by

M =
I
r2

la2 = F
I

l
, H = Hout. �22�

Here F=
r2 /a2 is the filling fraction of the SRR solenoid in
one unit cell.

The magnetic fields outside and inside an SRR solenoid
are

Hout = H0 −

r2

a2

I

l
= H0 − F

I

l
= H0 − M , �23�

Hin = Hout +
I

l
= H +

M

F
=

M + FH

F
, �24�

respectively. Here H0 represents the incident magnetic field.
The self inductances per turn of the cell solenoid L0 and

of the SRR solenoid L as well as the mutual inductance M
between them are given by

L0 = �0
a2

l
, L = �0


r2

l
= FL0, M = FL0 = L . �25�

The currents flowing in the cell solenoid �I0� and in the
SRR solenoid �I� per turn are

I0 = Hl = H0l − FI, I =
Ml

F
. �26�

FIG. 1. �Color online� �a� SRR and unit cell. �b� SRR-stack
array. �c� A SRR-stack as a solenoid. The y spacing of two SRRs in
a stack is l. �d� The unit-cell tube and the cell solenoid around it.
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The “pure magnetic energy” stored in one slice of the
unit-cell tube of thickness l, without taking into account the
energy stored in the interior capacitor of the SRR, can be
calculated:

1

2
L0I0

2 +
1

2
LI2 + MI0I = �a2l���0H2

2
+

�0M2

2F
+ �0HM

= �a2l���0�1 − F�H2

2
+

�0�M + FH�2

2F


= �a2l���1 − F�
�0

2
Hout

2 + F
�0

2
Hin

2  .

�27�

The physical meaning of the last form is obvious since the
volume fractions are F and 1−F, respectively.

The charge q and the corresponding energy stored in the
interior capacitor of the SRR are

q =	 Idt =
l

F
	 Mdt = −

l

F�0
2 �Ṁ + FḢ + �M� �28�

and

q2

2C
= �a2l�

�0

2�0
2F

�Ṁ + FḢ + �M�2, �29�

respectively. The joule heat generating in the SRR can also
be evaluated:

RI2 = �a2l�
��0M2

F
. �30�

Here we have used the defining relations �6�

1

C
= �0

2L, R = �L . �31�

From these results we conclude that the ED and EC ap-
proaches are indeed equivalent. Besides, the physical mean-

ing of each term appearing in Eq. �17� becomes very clear
now.

IV. CONCLUSION

In this paper, we review the energy density formulas ob-
tained in �6,11� and analyze the apparent contradictions be-
tween the EC and ED approaches. A small error in the mag-
netic energy formula of �6� has been pointed out, and the
corrected EC energy formula was obtained. We show that
energy density of an arbitrarily varying electromagnetic
wave in the wire-SRR medium can be derived using either
ED or EC approach, and the results are consistent. Besides,
our energy density formula reduces to Landau’s classical for-
mula in the lossless limit. This investigation reveals that the
ED and EC approaches are equivalent if the correct expres-
sion of power loss is known.

Note added. One of the reviewers of this paper pointed
out that the same kind of EC approach used in Ref. �6� to
derive the field energy density was also used in Ref. �15�.
After checking every step, we found the derivation of mag-
netic energy formulas in �15� �Eq. �28� and Eq. �33�� was
based on the Eq. �20�, which means the mutual inductance
contribution was still omitted. Thus the results in �15� should
also be corrected. Finally, we must stress that any energy
density formula for an effective medium can only be used in
the frequency range where the effective theory is accurate
enough, and one should not expect the formula to give reli-
able results beyond this frequency range.
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